• 搜索
    搜新闻
  • 您的位置: 首页 >  资讯

    转动惯性力的计算公式 转动惯性_环球热议

    互联网来源:2023-06-12 19:04:35

    1、是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度。

    2、在经典力学中,转动惯量(又称质量惯性矩,简称惯距)通常以I或J表示,SI 单位为 kg·m²。


    (相关资料图)

    3、转动惯量在旋转动力学中的角色相当于线性动力学中的质量,可形式地理解为一个物体对于旋转运动的惯性,用于建立角动量、角速度、力矩和角加速度等数个量之间的关系。

    4、扩展资料平行轴定理平行轴定理:设刚体质量为m ,绕通过质心转轴的转动惯量为Ic,将此轴朝任何方向平行移动一个距离d,则绕新轴的转动惯量I为:I=Ic+md²,这个定理称为平行轴定理。

    5、一个物体以角速度ω绕固定轴z轴的转动同样可以视为以同样的角速度绕平行于z轴且通过质心的固定轴的转动。

    6、也就是说,绕z轴的转动等同于绕过质心的平行轴的转动与质心的转动的叠加。

    7、利用平行轴定理可知,在一组平行的转轴对应的转动惯量中,过质心的轴对应的转动惯量最小。

    8、2、垂直轴定理垂直轴定理:一个平面刚体薄板对于垂直它的平面的轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和。

    9、表达式:Iz=Ix+Iy,式中Ix,Iy,Iz分别代表刚体对x,y,z三轴的转动惯量.对于非平面薄板状的刚体,亦有如下垂直轴定理成立:利用垂直轴定理可对一些刚体对一特定轴的转动惯量进行较简便的计算.刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量。

    10、由此折算所得的质点到转轴的距离 ,称为刚体绕该轴的回转半径κ,其公式为I=Mk²,式中M为刚体质量;I为转动惯量。

    11、参考资料来源:百度百科-转动惯量趣味科学:转动惯量是什么?看了这个你就知道了!其实前面几楼说的都不错,但是我想再从另一个角度解释一下转动惯量:先说转动惯量的由来,先从动能说起大家都知道动能E=(1/2)mv¬2,而且动能的实际物理意义是:物体相对某个系统(选定一个参考系)运动的实际能量,(P势能实际意义则是物体相对某个系统运动的可能转化为运动的实际能量的大小)。

    12、E=(1/2)mv¬2 (v¬2为v的2次方)把v=wr代入上式 (w是角速度,r是半径,在这里对任何物体来说是把物体微分化分为无数个质点,质点与运动整体的重心的距离为r,而再把不同质点积分化得到实际等效的r)得到E=(1/2)m(wr)¬2由于某一个对象物体在运动当中的本身属性m和r都是不变的,所以把关于m、r的变量用一个变量K代替,K=mr¬2得到E=(1/2)Kw¬2K就是转动惯量,分析实际情况中的作用相当于牛顿运动平动分析中的质量的作用,都是一般不轻易变的量。

    13、这样分析一个转动问题就可以用能量的角度分析了,而不必拘泥于只从纯运动角度分析转动问题。

    14、为什么变换一下公式就可以从能量角度分析转动问题呢?E=(1/2)Kw¬2本身代表研究对象的运动能量2、之所以用E=(1/2)mv¬2不好分析转动物体的问题,是因为其中不包含转动物体的任何转动信息。

    15、3、E=(1/2)mv¬2除了不包含转动信息,而且还不包含体现局部运动的信息,因为里面的速度v只代表那个物体的质心运动情况。

    16、4、E=(1/2)Kw¬2之所以利于分析,是因为包含了一个物体的所有转动信息,因为转动惯量K=mr¬2本身就是一种积分得到的数,更细一些讲就是综合了转动物体的转动不变的信息的等效结果K=∑ mr¬2 (这里的K和上楼的J一样)所以,就是因为发现了转动惯量,从能量的角度分析转动问题,就有了价值。

    17、转动惯量moment of inertia刚体绕轴转动惯性的度量。

    18、其数值为I=Δmiri2或I=,式中ri为组成刚体的质量微元Δmi(或dm)到转轴的垂直距离;求和号(或积分号)遍及整个刚体。

    19、转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。

    20、规则形状的均质刚体,其转动惯量可直接计得。

    21、不规则刚体或非均质刚体的转动惯量,一般用实验法测定。

    22、转动惯量应用于刚体各种运动的动力学计算中。

    23、描述刚体绕互相平行诸转轴的转动惯量之间的关系,有如下的平行轴定理:刚体对一轴的转动惯量,等于该刚体对同此轴平行并通过质心之轴的转动惯量加上该刚体的质量同两轴间距离平方的乘积。

    24、由于和式的第二项恒大于零,因此刚体绕过质量中心之轴的转动惯量是绕该束平行轴诸转动惯量中的最小者。

    25、刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量。

    26、由此折算所得的质点到转轴的距离 ,称为刚体绕该轴的回转半径κ,其公式为,式中M为刚体质量;I为转动惯量。

    27、转动惯量的量纲为L2M,在SI单位制中,它的单位是kg·m2。

    28、刚体绕某一点转动的惯性由更普遍的惯量张量描述。

    29、惯量张量是二阶对称张量,它完整地刻画出刚体绕通过该点任一轴的转动惯量的大小。

    30、转动惯量定义为:J=∑ mi*ri^2 (1)式中mi表示刚体的某个质点的质量,ri表示该质点到转轴的垂直距离。

    31、 转动惯量是表征刚体转动惯性大小的物理量,它与刚体的质量、质量相对于转轴的分布有关。

    32、 刚体的转动惯量是由质量、质量分布、转轴位置三个因素决定的。

    33、 (2) 同一刚体对不同转轴的转动不同,凡是提到转动惯量,必须指明它是对哪个轴的才有意义。

    本文到此分享完毕,希望对大家有所帮助。

    关键词:

    下一篇: 最后一页
    上一篇: 讯息:“百名红通人员”郭洁芳回国投案